
eBPF with Nix: laptop to testbed
Yifei Sun

Inria, ENS de Lyon, Université Grenoble Alpes

January 31, 2026 1 / 17

Background
I started a project

• Multicast caching system for networked FS over XDP

• Its running late

• So here I am…

January 31, 2026 2 / 17

Background
Nix

• Declarative & functional

• Source code -> Derivations -> Closure

• NixOS: operating system as closure

Testbed (Grid’5000 @ SLICES-FR)

• Academic, reservation required

• Ephemeral bare metal machines

January 31, 2026 3 / 17

Problem

• Environment setup and collboration

‣ Headers, compiler, editor…

‣ KConfig, QEMU, … (what if multiple machine is needed?)

• Development, deployment and benchmark

‣ Cluster boot, data collection, …

• Peer review

‣ Ease of result reproduction

January 31, 2026 4 / 17

What worked for me
NixOS VM tests

• Basically Nix + Python + QEMU

• Multi-machines, different kernels, networking

• Binary cache, and benefits from using Nix

NixOS Compose

• Deployment tool

• Substitute with your own stuff

January 31, 2026 5 / 17

Userspace tooling

Pull packages from pinned nixpkgs

devShells.x86_64-linux.default = pkgs.mkShell {

 inputsFrom = [<locally defined derivations>];

 packages = with pkgs.llvmPackages; [clang-unwrapped libllvm];

};

• Compilers

• Libraries

• …

January 31, 2026 6 / 17

Get a kernel
kernel = {

 version = "6.19.0-rc5+multikernel";

 modDirVersion = "6.19.0-rc5";

 stdenv = pkgs.gcc13Stdenv;

 # or ./. or fileset ...

 src = fetchFromGitHub {

 owner = "multikernel";

 repo = "linux";

 rev = "a3b4530cc04fe16ddef6b251baac488df3cae79";

 hash = "sha256-mum7rTLU5xUS2qex7br+EotjPyp0...";

 };

 kernelPatches = [...];

 structuredExtraConfig = {

 MULTIKERNEL = lib.kernel.yes;

 };

};

boot.kernelPackages = pkgs.linuxPackagesFor (

 pkgs.callPackage (

 { buildLinux, fetchFromGitHub, ... } @ args:

 buildLinux (

 args

 //

 kernel # <--

 //

 (args.argsOverride or { })

)

)

 { }

);

January 31, 2026 7 / 17

One machine
pkgs.testers.runNixOSTest {

 name = "one-machine-test";

 nodes.machine1 = {

 imports = [nixosModules.kernel];

 services.scx.enable = true;

 };

 testScript = ''

 machine1.wait_for_unit("default.target")

 machine1.succeed("")

 machine1.fail("")

 '';

}

January 31, 2026 8 / 17

More machines?
pkgs.testers.runNixOSTest {

 name = "lots-of-machine-test";

 nodes.machine1.imports = [nixosModules.grafana];

 nodes.machine2.imports = with nixosModules; [

 kernel exporter ebpf benchmark

];

 testScript = ''

 start_all()

 machine1...

 machine2...

 '';

}

January 31, 2026 9 / 17

What’s in there?
nix-repl> test =

pkgs.testers.runNixOSTest { ... }

nix-repl> :p test.

test.config test.name

test.driver test.nodes

test.driverInteractive ...

Node closure:

<test>.nodes.<name>.system.build.toplevel

Driver:

<test>.driver (run testScript)

<test>.driverInteractive (Python shell)

Python test driver (was Perl ~2009)

• Nodes

‣ qemu

• VLANs

‣ vde_switch

January 31, 2026 10 / 17

Mock syscall

Say we want to troll ourselves:

SEC("ksyscall/statx")

int BPF_KSYSCALL(fsd_statx_entry, ... statx(2) args) {

 // generate a map entry to collect start ts

 // check path, if not match return

 // else override with a static statx content

 struct statx stx = { ... };

 bpf_probe_write_user(statxbuf, &stx, sizeof(stx));

 return bpf_override_return(ctx, 0);

}

And count how many times we can footgun ourselves

With a counter and a histogram

January 31, 2026 11 / 17

Declarative userspace program

• Auto-load the the program (feat. ebpf_exporter)

• Collect the metrics and plot them (feat. Prometheus & Grafana)

• Local testing (feat. NixOS VM test)

• Deployment (feat. NixOS-Compose)

January 31, 2026 12 / 17

Local testing

For simplicity

• We will be using a readily available userspace tool

‣ Loading the program

‣ Read the map and re-expose the content over Prometheus

Complication is fast

• Build once and its immutable

• Push cache to server (or have a CI server build it)

• SBOM

Debugging is easy

• SSH backdoor enable with a knob

January 31, 2026 13 / 17

Demo

• Build interactive driver closure

nom build .#checks.x86_64-linux.default.driverInteractive

• Start the driver

$./result/bin/nixos-test-driver

start vlan

running vlan (pid 3859017; ctl /run/user/1000/vde1.ctl)

SSH backdoor enabled, the machines can be accessed like this:

 collector: ssh -o User=root vsock/3

 exporter: ssh -o User=root vsock/4

January 31, 2026 14 / 17

Straight to prod

Bit-perfect reproducibility (*: for some store paths)

Everything is in closure

• Deployment harness is easy to write

January 31, 2026 15 / 17

Demo

• Build deployment closure (instrumented with NixOS test)

nxc build

• Schedule couple machines and deploy the closure to cluster

January 31, 2026 16 / 17

Effort

Less than 250 LoC

• Portable modules

• Composable with other services

• Adding new programs to deployment

only adds a couple characters

services.prometheus.exporters.ebpf =

{

 enable = true;

 names = ["a" "b" "c" ...];

};

January 31, 2026 17 / 17

	eBPF with Nix: laptop to testbed
	Background
	Background
	Problem
	What worked for me
	Userspace tooling
	Get a kernel
	One machine
	More machines?
	What's in there?
	Mock syscall
	Declarative userspace program
	Local testing
	Demo
	Straight to prod
	Demo
	Effort

