eBPF with Nix: laptop to testbed
Yifei Sun

Inria, ENS de Lyon, Université Grenoble Alpes

2 == UGA

ENS DE LYON

y 4

January 31, 2026 1/17

Background
I started a project

« Multicast caching system for networked FS over XDP
o Its running late
« So here I am...

January 31, 2026 2/17

Background

Nix Testbed (Grid’5000 @ SLICES-FR)
« Declarative & functional « Academic, reservation required
« Source code -> Derivations -> Closure - Ephemeral bare metal machines

« NixOS: operating system as closure

January 31, 2026 3/17

Problem

« Environment setup and collboration

» Headers, compiler, editor...

» KConfig, QEMU, ... (what if multiple machine is needed?)
« Development, deployment and benchmark

» Cluster boot, data collection, ...
« Peer review

» Fase of result reproduction

January 31, 2026 4/17

What worked for me

NixOS VM tests

« Basically Nix + Python + QEMU

« Multi-machines, different kernels, networking
« Binary cache, and benefits from using Nix

NixOS Compose
« Deployment tool
« Substitute with your own stuft

January 31, 2026 5/17

Userspace tooling
Pull packages from pinned nixpkgs

devShells.x86 64-1linux.default = pkgs.mkShell {
inputsFrom = [<locally defined derivations>];
packages = with pkgs.llvmPackages; [clang-unwrapped libllvm];

}i

« Compilers
o Libraries

January 31, 2026 6/17

Get a kernel

kernel = {

version = "6.19.0-rc5+multikernel";
modDirVersion = "6.19.0-rc5";
stdenv = pkgs.gccl3Stdenv;

or ./. or fileset
src = fetchFromGitHub {
owner = "multikernel";
repo = "linux";
rev = "a3b4530cc04felbddefb6b251baac488df3cae79";
hash = "sha256-mum7rTLU5xUS2gex7br+EotjPyp0...";
b
kernelPatches = [... 1;

structuredExtraConfig = {
MULTIKERNEL = lib.kernel.yes;
b

January 31, 2026

boot.kernelPackages =

pkgs.callPackage (

{ buildLinux,

fetchFromGitHub,

buildLinux (

args

//

kernel # <--

//

(args.argsOverride or { })

pkgs.linuxPackagesFor (

} @ args:

7/17

One machine

pkgs.testers.runNix0STest {
name = "one-machine-test";

nodes.machinel = {
imports = [nixosModules.kernel];
services.scx.enable = true;

}i

testScript = '
machinel.wait for unit("default.target")
machinel.succeed("")
machinel.fail("")

[
’

January 31, 2026 8/17

More machines?
pkgs.testers.runNix0STest {

name = "lots-of-machine-test";

nodes.machinel.imports
nodes.machine2.imports

[nixosModules.grafana];

with nixosModules;

kernel exporter ebpf benchmark

1;

testScript =
start all()
machinel. ..
machine2. ..

[
’

January 31, 2026

[

9/17

What’s in there?

nix-repl> test = Python test driver (was Perl ~2009)
pkgs.testers.runNix0STest { ... } « Nodes

nix-repl> :p test. . gemu

test.config test.name

test.driver test.nodes + VLANSs

test.driverInteractive » vde_switch

Node closure:
<test>.nodes.<name>.system.build.toplevel
Driver:

<test>.driver (run testScript)

<test>.driverInteractive (Python shell)

January 31, 2026

10/ 17

Mock syscall

Say we want to troll ourselves:

SEC("ksyscall/statx")

int BPF KSYSCALL(fsd statx entry, ... statx(2) args) {
// generate a map entry to collect start ts
// check path, if not match return
// else override with a static statx content
struct statx stx = { ... };
bpf probe write user(statxbuf, &stx, sizeof(stx));
return bpf override return(ctx, 0);

}

And count how many times we can footgun ourselves

With a counter and a histogram

January 31, 2026 11/17

Declarative userspace program

« Auto-load the the program (feat. ebpf exporter)

o Collect the metrics and plot them (feat. Prometheus & Grafana)
« Local testing (feat. NixOS VM test)

« Deployment (feat. NixOS-Compose)

January 31, 2026 12 /17

Local testing

For simplicity

« We will be using a readily available userspace tool
» Loading the program
» Read the map and re-expose the content over Prometheus

Complication is fast

« Build once and its immutable

« Push cache to server (or have a CI server build it)
« SBOM

Debugging is easy
« SSH backdoor enable with a knob

January 31, 2026 13/17

Demo

 Build interactive driver closure
nom build .#checks.x86 64-linux.default.driverInteractive

« Start the driver

$./result/bin/nixos-test-driver

start vlan

running vlan (pid 3859017; ctl /run/user/1000/vdel.ctl)

SSH backdoor enabled, the machines can be accessed like this:
collector: ssh -o User=root vsock/3
exporter: ssh -o User=root vsock/4

January 31, 2026 14 /17

Straight to prod
Bit-perfect reproducibility (*: for some store paths)

Everything is in closure
« Deployment harness is easy to write

January 31, 2026 15/17

Demo
» Build deployment closure (instrumented with NixOS test)

nxc build

« Schedule couple machines and deploy the closure to cluster

January 31, 2026 16 /17

Effort

Less than 250 LoC services.prometheus.exporters.ebpf =
{

« Portable modules enable = true;

« Composable with other services names = ["a" "b" "c" ... 1:

« Adding new programs to deployment s

only adds a couple characters

January 31, 2026 17 /17

	eBPF with Nix: laptop to testbed
	Background
	Background
	Problem
	What worked for me
	Userspace tooling
	Get a kernel
	One machine
	More machines?
	What's in there?
	Mock syscall
	Declarative userspace program
	Local testing
	Demo
	Straight to prod
	Demo
	Effort

